Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors.
نویسندگان
چکیده
Levels of vascular endothelial growth factor (VEGF) are regulated, in part, through activation of the phosphatidylinositol 3'-kinase/Akt pathway. Using pharmacologic inhibitors, we have examined the relative contributions of Akt and mammalian target of rapamycin (mTOR) signaling to VEGF production in neuroblastoma and rhabdomyosarcoma cells growing under normoxic (21% O(2)) or hypoxic (1% O(2)) conditions. Exogenous VEGF stimulated both Akt and extracellular signal-regulated kinase 1/2 phosphorylation in six of seven rhabdomyosarcoma cell lines but in only one of seven neuroblastoma cells, suggesting autocrine stimulation predominantly in rhabdomyosarcoma cell lines. In general, under normoxic conditions, neuroblastoma cells produced more VEGF (120-1,180 pg/10(6) cells/24 h) compared with rhabdomyosarcoma lines (0-200 pg/10(6) cells/24 h). Rapamycin, a selective inhibitor of mTOR, reduced VEGF production in rhabdomyosarcoma cells under normoxic conditions and partially suppressed hypoxia-driven increases in VEGF. However, it poorly inhibited VEGF production under either condition in the majority of neuroblastoma cell lines despite inhibition of mTOR signaling. Rapamycin failed to modulate levels of hypoxia-inducible factor 1alpha (HIF-1alpha) under normoxic conditions and modestly reduced hypoxia-driven increases in HIF-1alpha only in rhabdomyosarcoma cells. In contrast to rapamycin, inhibition of Akt by A-443654 completely blocked signaling to glycogen synthase kinase 3beta and had more dramatic effects on VEGF production. Notably, A-443654 significantly inhibited VEGF production in rapamycin-refractory neuroblastoma cell lines. Importantly, whereas combining A-443654 with rapamycin had variable effect on cell proliferation, the combination essentially blocked hypoxia-driven increases in VEGF in all cell lines examined, suggesting that dual blockade at different levels in the phosphatidylinositol 3'-kinase-initiated signaling pathway may be a reasonable strategy for preventing VEGF production in cancer cells derived from pediatric solid tumors. However, this will require formal testing in vivo using animal models of childhood cancer.
منابع مشابه
Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease
Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...
متن کاملThe insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma.
Signaling through the type 1 insulin-like growth factor receptor (IGF-1R) occurs in many human cancers, including childhood sarcomas. As a consequence, targeting the IGF-1R has become a focus for cancer drug development. We examined the antitumor activity of CP-751,871, a human antibody that blocks IGF-1R ligand binding, alone and in combination with rapamycin against sarcoma cell lines in vitr...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملCelastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway.
Understanding the molecular basis and target of traditional medicine is critical for drug development. Celastrol, derived from Trypterygium wilfordii Hook F. ("Thunder of God Vine"), a traditional Chinese medicine plant, has been assigned anticancer activities, but its mechanism is not well understood. Here, we investigated whether Celastrol could inhibit angiogenesis-mediated tumor growth and,...
متن کاملErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells.
ErbB2 overexpression in breast tumors results in increased metastasis and angiogenesis and reduced survival. To study ErbB2 signaling mechanisms in metastasis and angiogenesis, we did a spontaneous metastasis assay using MDA-MB-435 human breast cancer cells stably transfected with constitutively active ErbB2 kinase (V659E), a kinase-dead mutant of ErbB2 (K753M), or vector control (neo). Mice in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2007